SHORT PAPERS

is the IIDF for a synchronous perturbation. Separating (6) into real
and imaginary parts and eliminating ® yields
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We observe that the border of stable locking determined by a
synchronous perturbation is equivalent to
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This means that if 4 is plotted versus w for a constant injected
amplitude I,, the locking becomes unstable just at the maximum
frequency deviation (in those cases where such a maximum deviation
exists); this was implicit in [4]-[6] but not explicitly stated. Note
that we have no restrictions on the injected amplitude I, or the fre-
quency deviation, still the maximum frequency deviation determines
a stable state, as long as such a maximum exists and lies in the region
which is indicated as stable by the boundary curve(s). In view of the
above we can restrict our study of stability to the use of nonsyn-
chronous perturbations, which is usually an exceedingly simple
matter; the border of stability is determined by [4, eq. (14) and (15)]:
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The above discussion is illustrated in Figs. 1 and 2 where typical
stability border curves are drawn for oscillators having nonlinear
conductance and both nonlinear conductance and susceptance, re-
spectively. ‘

Van der Pol was aware of the rule concerning the locus curve for
the particular oscillator which he studied. Since his method does not,
however, allow for separation into different kinds of perturbations,
this insight could not be practically applied.

The boundary curve is not necessarily single valued. It is, for
instance, quite possible to have an oscillator which becomes stably
locked when the amplitude crosses the lower boundary curve and then
becomes unstably locked again if the injected power is increased so
that the amplitude crosses the upper boundary curve.

It is to be noted that whereas the curves for constant injected
amplitude are vertical at their intersections with the stability border
determined by the synchronous perturbation (“the locus curve”),
no such relationship exists regarding the stability border determined
with nonsynchronous perturbations (“the boundary curve”).

Our discussion has related to amplitudes; it is easily shown that
identical relations can be established for the phase 8 (i.e., 9w /30 =0
at the border of stable locking determined by a synchronous per-
turbation). Concerning the output power it should be noted that
34 /8w— = (synchronous stability border) corresponds to 9Pgu/dw
— o provided that
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Finally, it should be noticed that for an oscillator having a non-
linear susceptance it is very likely that the power required to bring
an unlocked oscillator to a locked state for some frequencies exceeds
that required to keep a locked oscillator in a locked state at the same
frequencies. Our results pertain to the latter case. No information
about the additional power required in the former case can be ob-
tained by the use of synchronous and nonsynchronous perturba-
tions.

The following simple rule has thus been established for the de-
termination of the stable locking region (“holding” region) of an
oscillator with a general tuning circuit. If, for a given injected am-
plitude, there exist points where dw/3A4 =0, these points determine
the locking range, unless these points lie in the region which is un-
stable as determined by a nonsynchronous perturbation (8) and (9).
This is valid irrespective of the magnitude of the frequency deviation
from the free-running frequency. It should perhaps be pointed out
that the technique described here can be used to study amplifiers as
well, since the describing function introduced also describes an am-
plifier.
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Broad-Band Twisted-Wire Quadrature Hybrids
R. E. FISHER

Abstract—A symmetrical 3-dB quadrature hybrid, consisting
chiefly of a bifilar pair of twisted wires, is described. A cascade of
two such hybrids can achieve an octave bandwidth with a 0.7-dB
coupling error. Since this class of hybrid is simple, compact, and low
in cost, its use may be preferred over the more common coaxial line
or printed-circuit types in the frequency region below 1 GHz.

I. INTRODUCTION

The concept of using twisted wires wrapped upon ferrite toroids
to form compact, asymmetric, 180° hybrids was first introduced
by Ruthroff [1]. It has also been found by several other investigators
[2]-[4] that twisted-wire structures can be made to function as
symmetric, 3-dB quadrature (90°) hybrids, thus permitting the con-
struction of compact directional couplers at arbitrarily low fre-
quencies.

Examples of twisted-wire quadrature hybrids centered at ap-
proximately 7 and 300 MHz are shown schematically and pictorially
in Figs. 1, 2, and 5. For both hybrids, the coupling section consists of
two strands of insulated copper magnet wire tightly twisted together
to form a bifilar pair. For the 7-MHz hybrid shown in Fig. 2, the
pair is wrapped upon a small ferrite toroid which is then soldered to
four BNC along with two mica capacitors. For the 225-400-MHz
two-stage hybrid shown in Fig. 5, where much less inductance is re-
quired, the wire pairs are bent into loops, and then soldered onto an
epoxy fiberglass circuit board along with four omni-spectra-miniature
(OSM) connectors.

II. SINGLE-STAGE HYBRID DESIGN

Consider Fig. 1. If terminal 1 is connected to terminal 2, and
terminal 3 is connected to terminal 4, the resulting two-terminal
network is now simply a lumped inductance L, since the magnetic
coefficient of coupling between the twisted wires is nearly unity.

If terminal 1 is connected to terminal 4, and terminal 2 is con-
nected to terminal 3, this different two-terminal network can be ap-
proximated by a lumped capacitor C, which is the sum of the inter-
winding capacitance and the external capacitors. At UHF, the ex-
ternal capacitors may not be required.

The 4-port will display hybrid properties when

n=yL 6

Equal power division between ports 2 and 4 will occur at a frequency
fo where

1
L=--=27
SE T
wo = 2xfo. (2
The transducer loss between ports 1 and 2 is
P, wo\?
=1 pate 3
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QUADRATURE HYBRID

Fig. 1. Quadrature-hybrid functional diagram.
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Fig, 2. Photograph of 7-MHz quadrature hybrid.
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Fig. 3. Computer-generated characteristics of two-stage

quadrature hybrid when 6 =23°,

and between ports 1 and 4 is

Pl w\?

The port 3 isolation and return loss (at all ports) is theoretically
infinite at all frequencies. Also, the voltages at ports 2 and 4 should
differ in phase by 90° over an infinite frequency band.

The 7-MHz hybrid shown in Fig. 2 exhibited a measured in-
sertion loss of 0.1 dB, and the isolation and return loss both ex-
ceeded 30 dB. One stage of the 300-MHz dual hybrid shown in Fig. 5
had a measured insertion loss of 0.2 dB, while the isolation and re-
turn loss were about 20 dB.

III. BroaD-BANDING THE HYRBRID

Equations (3) and (4) indicate that a single-stage twisted-wire
quadrature hybrid is not a very broad-band network, since equal
power division occurs only at one frequency.

However, the hybrid can be broad-banded by cascading two sec-
tions, as shown in Fig. 3. Ports 3 and 4 of the first hybrid are con-
nected, respectively, to ports 1’ and 2/ of the second identical hybrid
via sections of Z, coaxial cable each having an electrical length @
at wo.

When this two-stage cascade was computer analyzed, it exhibited
the transmission characteristics shown in Fig. 3. All frequencies are
normalized to we, which is the 3-dB frequency of each hybrid used in
the cascade. Note that there exist three frequencies wi, w2, and ws
where equal division of generator power occurs. The frequencies

t The computer program used was BELNAP-II, a Bell Labhoratories linear circuit-
analysis program.
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Fig. 4. Two-stage quadrature-hybrid transmission
parameters versus connecting cable length.

Tig. 5. Photograph of two-stage 225-400-MHz quadrature hybrid.

Fig, 6, Measured characteristics of two-stage 225-400-MHz quadrature hybrid,

w4 and wp define that frequency band over which the difference in
coupling never exceeds .

Fig. 4 presents some graphs which can be used to design a broad-
band two-stage hybrid. These show how some of the transmission
characteristics given by Fig. 3 are related to the electrical length of
the connecting cables. An octave bandwidth (wp/ws=2) results
when 02224°, Over this band the coupling difference « will never
exceed 0.7 dB.
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Figs. 5 and 6 show, respectively, the photograph and transmis-
sion characteristics of a two-stage hybrid designed to cover the
225-400-MHz communications band. Note that « is about 0.5 dB,
which implies from Fig. 4 that the coupling lines are about 24.7°
long. The isolation and return loss exceeded 20 dB over the measured
band. The insertion loss never exceeded 0.5 dB.

An apparent disadvantage of this cascade technique is that the
coaxial connecting cables become prohibitively long as the hybrid
operating frequency is lowered. This problem can be bypassed by
substituting lumped-element low-pass filters for the coaxial cables.
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Resolution of the Paradox Concerning Energy Flow
on Nonlinear Transmission Lines

A. E. KARBOWIAK anp R. H. FREEMAN

Abstract—The energy relations and the constitutive relations
pertaining to a nonlinear transmission line are™examined in detail.
It is concluded that mathematical models which have been used in
certain studies and which lead to the paradox concerning energy
dissipation in the shock front are inadmissible. Correct models are
free from such paradoxes. The work leads to the formulation of the
hypothesis of realization: it is impossible to realize a continuous
loss-free transmission medium which would be characterized by
nonlinear distributed inductance L(I) and capacitance C(V), unless
the medium is dispersive.

INTRODUCTION

It is well known from studies in gas dynamics [1] that wave
propagation in a nonlinear medium is accompanied by formation of
shock waves. More recently, Landauer [3] and Riley [4] carried out
similar studies with respect to an electrical nonlinear transmission
line. Their work confirms the existence of shock wave and energy
dissipation in the vicinity of the shock front. However, with electrical
transmission lines it is possible, at least in principle, to reduce the
dissipation in the resistive elements to zero, and then, of course, it
becomes difficult to account for the energy lost.

To explain the paradox, some argue that the problem is im-
properly formulated and that the model must contain resistive ele-
ments [3], while others suggest that the lost energy is radiated from
the system by electromagnetic means [4]. Such “explanations,”
however, are not tenable; if the system is screened, like a coaxial
cable, radiation cannot be evoked. The problem with postulating
resistive elements is that if the problem is to be properly formulated,
then it must be possible to obtain a valid solution in the limit as the
resistive elements are reduced to zero. This, however, is not the case.
When the resistive elements are sufficiently small, the rate of energy
loss in the shock region is much too slow (in the limit infinitely slow)
to account for the loss implied.

The purpose of this short paper is to resolve the paradox, as far as
distributed systems are concerned, through a detailed study of the
equations involved.

MATHEMATICAL MODEL

If we accept the validity of Maxwell’s equations, then we must
also accept the pair of equations

EK__Lm (1)
ox
o_ _ C(V) °Z (1b)
ox
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Fig, 1, Charge-voltage relation for a nonlinear capacitor.

describing voltage (V) and current (I) on a nonlinear transmission
line.

The functions C(V) and L(I) are the constitutive relations de-
scribing the properties of the materials making up the transmission
line. These describe, respectively, the differential capacitance and
inductance per unit length. For a nonlinear capacitor, the charge Q
as a function of voltage V can be represented by the nonlinear rela-
tion Q=Q(V) and the capacitance (really an incremental capaci-
tance) is defined by dQ/dV =C(V). We may regard C(V) as a phys-
ical property of the nonlinear capacitor.

In a similar way for a nonlinear inductor we have ¢ =¢(I), where
¢ is the magnetic flux and the nonlinear inductance is defined by
L(I)=d¢/dI.

Fig. 1 shows a convex relation for a nonlinear capacitor and
mutatis mutendi a similar curve would apply with reference to a
nonlinear inductance with the one-to-one correspondence (¢, L, I)
~(Q, C, V).

It is sufficient to consider a particular relation, such as convex,
for the following reason.

From studies in fluid dynamics, it is known that for a convex rela-
tion between the velocity of propagation and the amplitude of the
disturbance, the trailing edge of the disturbance disperses while
the leading edge becomes a “shock front,” whereas for a concave
relation it is the leading edge that disperses and the trailing edge
becomes the shock front. In this short paper we are concerned with
energy-conversion processes at the shock front as normally under-
stood, and whether the relations are convex or concave the results
are the same.

ENERGY CONSERVATION

We now examine the energy conservation in a region containing
a disturbance which forms a transition from Vi, I; on one side to
Ve, I. on the other. If % is the velocity of the disturbance (to be de-
termined) and since charge and magnetic flux must be conserved,
we can equate the rate of accumulation of charge in the region, that
is #(Qz2—Q1), to the net current influx, that is I, —I;. A similar rea-
soning applies with respect to the magnetic-flux (¢) conservation,
that is, #(¢2—¢1) must be equal to Va—~ V). In this way we get

w(@:— Q) =1, — I (2a)

and
(s — 1) = Va— Vo (2b)

Equations (2a) and (2b) determine uniquely the velocity of the dis-
turbance.

The apparent energy loss in the vicinity of the disturbance can be
calculated as a difference between the net energy influx and the in-
crease in stored energy. The net rate of energy influx is Volo— Vily
—7[(VH— V) (L— L)+ (L4 1) (Vi— Vl)] whlle the rate of i increase
in stored magnetic and electric energies is # /32 I d¢ and # : V dQ,
respectively, # being the velocity of propagatlon

The total rate of energy loss is

Q2
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