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is the II DF for a synchronous perturbation. Separating (6) into real

and imaginary parts and eliminating @ yields

We observe that the border of stable locking determined by a
synchronous perturbation is equivalent to

aA au
=03 or –—=0

au 8A

from (.5).
This means that if A is plotted versus aI for a constant injected

amplitude 1,, the locking becomes unstable just at the maximum
frequency deviation (in those cases where such a maximum deviation

exists); this was implicit in [4]- [6 ] but not explicitly stated. Note

that we have no restrictions on the injected amplitude 1. or the fre-
quency deviation, still the maximum frequency deviation determines

a stable state, as long as such a maximum exists and lies in the region
which is indicated as stable by the boundary curve(s). In view of the
above we can restrict our study of stability to the use of nonsyn-

chronous perturbations, which is usually an exceedingly simple
matter; the border of stability is determined by [4, eq. (14) and (15)]:

A aN,,
N,. +G, +zm=O

A dNj, ~
Ni, +B, +———

2 aA=’

(8)

(9)

Theabove discussion isillustrated in Figs. 1 and2 where typical

stability border curves are drawn for oscillators having nonlinear

conductance and both nonlinear conductance and susceptance, re-
spective y.

Van der Pol was aware of the rule concerning the locus curve for

theparticular oscillator which restudied. Since hismethod does not,
however, allow for separation into different kinds of perturbations,

this insight could not be practically applied.
The boundary curve is not necessarily single valued. It is, for

instance, quite possible to have an oscillator which becomes stably

locked when the amplitude crosses the lower boundary curve and then

becomes unstably locked again if the injected power is increased so
that the amplitude crosses the upper boundary curve.

It is to be noted that whereas the curves for constant injected

amplitude are vertical at their intersections with the stability border
determined by the synchronous perturbation (“the locus curve”),
nosuchrelationship exists regarding the stability border determined

with nonsynchronous perturbations (“the boundary curve”).
Our discussion has related to amplitudes; it is easily shown that

identical relations can be established for the phase o (i.e., Ek/W=O
at the border of stable locking determined by a synchronous per-
turbation). Concerning the output power it should be noted that

t)A/&r+m (synchronous stability border) corresponds to aP..t/a~

+CO provided that

N,eA + _A:%
2 aA+O’

Finally, it should be noticed that foranoscillator having anon-

linear susceptanceit isvery likely that the power required to bring
an unlocked oscillator to a locked state for some frequencies exceeds
that required tokeepa locked oscillator in a locked state at the same
frequencies. Our results pertain to the latter case. No information
about the additional power required in the former case can be ob-
tained by the use of synchronous and nonsynchronous perturba-
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Broad-Band Twisted-Wire Quadrature Hybrids

R. E. FISHER

Abstract—A symmetrical 3-dB quadrature hybrid, consisting
chiefly of a bitilar pair of twisted wires, is described. A cascade of

two such hybrids can achieve an octave bandwidth with a 0.7-dB

coupliig error. Since this class of hybrid is simple, compact, and low

in cost, its use maybe preferred over the more common coaxial line

or printed-circuit types h the frequency region below 1 GHz.

I. INTRODUCTION

The concept of using twisted wires wrapped upon ferrite toroids

to form compact, asymmetric, 180° hybrids was first introduced

by Ruthroff [1]. It has also been found by several other investigators
[2]- [4] that twisted-wire structures can be made to function as

symmetric, 3-dB quadrature (90°) hybrids, thus permitting the con-
struction of compact directional couplers at arbitrarily low fre-
quencies.

Examples of twisted-wire quadrature hybrids centered at ap-
proximately 7 and 300 MHz are shown schematically and pictorially

in Figs. 1, 2, and 5. For both hybrids, the coupling section consists of

two strands of insulated copper magnet wire tightly twisted together
to form a bifilar pair. For the 7-MHz hybrid shown in Fig. 2, the

pair is wrapped upon a small ferrite toroid which is then soldered to
four BNC along with two mica capacitors. For the 225400-MHz

two-stage hybrid shown in Fig. 5, where much less inductance is re-
quired, the wire pairs are bent into loops, and then soldered onto an

epoxy fiberglass circuit board along with four omni-spectra-miniature
(OSM) connectors.

II. SINGLE-STAGE HYBRID DESIGN

Consider Fig. 1. If terminal 1 is connected to terminal 2, and

terminal 3 is connected to terminal 4, the resulting two-terminal

network is now simply a lumped inductance L, since the magnetic

coefficient of coupling bstween the twisted wires is nearly unity.

If terminal 1 is connected to terminal 4, and terminal 2 is con-

nected to terminal 3, this different two-terminal network can be ap-

proximated by a lumped capacitor c, which is the sum of the inter-

winding capacitance and the external capacitors. At UHF, the ex-
ternal capacitors may not be required.

The 4-port will display hybrid properties when

/

T
z,= ~. (1)

Equal power division between ports 2 and 4 will occur at a frequency

.fo where
tions.

The following simple rule has thus been established for the de-
1

termination of the stable locking region (“holding” region) of an
oOL = –— = z~

Wjc

oscillator with a general tuning circuit. If, for a given injected am- coo = 2Tfo.
plitude, there exist points where &o/8A = O, these points determine

the locking range, unless these points lie in the region which is un- The transducer 10SSbetween ports 1 and 2 is

(2)

stable as determined by a nonsynchronous perturb~tion (8) and (9). PI
This is valid irrespective of the magnitude of the frequency deviation

()

2
—=1+ N (3)

from the free-running frequency. It should perhaps be pointed out
P, m

that the technia ue described here can be used to studv amplifiers as. .
well, since the describing function introduced also describes an am-
plifier,
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Fig. 1, Quadrature-hyhrid functional diagram.

rMICA CAPACITOR (C72)

/-::R:: %%)

Fig. 2, Photograph of 7-MHz quadrature hybrid.

Fig. 3. Computer-generated characteristics of two-stage
quadrature hybrid when 8 =23”.
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Fig. 4. Two-stage quadrature-hybrid transmission
parameters versus connecting cable length.

The port 3 isolation and return loss (at all ports) is theoretically
infinite at all frequencies. Also, the voltages at ports 2 and 4 should
differ in phase by 90° over an infinite frequency band.

The 7-MHz hybrid shown in Fig. 2 exhibited a measured in-

sertion loss of 0.1 d B, and the isolation and return loss both ex-
ceeded 30 dB. One stage of the 300-MHz dual hybrid shown in Fig. 5
had a measured insertion loss of 0.2 dB, while the isolation and re-

turn loss were about 20 dB.

III. BROAD-BANDING THE HYBRID

(4)
Fig. 5. Photograph of two-stage 225–400-MHz quadrature hybrid.

Equations (3) and (4) indicate that a single-stage twisted-wire

quadrature hybrid is not a very broad-band network, since equal
power division occurs only at one frequency.

However, the hybrid can be broad-banded by cascading two sec-
tions, as shows in Fig. 3. Ports 3 and 4 of the first hybrid are con-
nected, respectively, to ports 1‘ and 2‘ of the second identical hybrid
via sections of ZO coaxial cable each having an electrical Ieugth o

Fig. 6. Measured characteristics of two-stage 225–400-MHz quadrature hybrid.

at WO.

When this two-stage cascade was computer analyzed,’ it exhibited

the transmission characteristics shown in Fig. 3. All frequencies are
CU.4and COB define that frequency band over which the difference in
coupling never exceeds a.

normalized to OJO, which is the 3-dB frequency of each hybrid used in

the cascade. Note that there exist three frequencies W, 02, and ~g
Fig. 4 presents some graphs which can be used to design a broad-

band two-stage hybrid. These show how some of the transmission
where equal division of generator power occurs. The frequencies characteristics given by Fig. 3 are related to the electrical length of

the connecting cables. An octave bandwidth (oJB/o~ = 2) results

I The computer pro,gram used was BELNAP-U, a Bell Laboratories linear circuit-
when 0=24°. Over this band the coupling difference a will never

analysis program. exceed 0.7 dB.
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Figs. 5 and 6 show, respectively, the photograph and transmis-

sion characteristics of a two-stage hybrid designed to cover the

225-400-MHz communications band. Note that a is about 0.5 dB,

which implies from Fig. 4 that the coupling lines are about 24.7°
long. The isolation and return loss exceeded 20 dB over the measured

band. The insertion loss never exceeded 0.5 dB.
An apparent disadvantage of this cascade technique is that the

coaxial connecting cables become prohibitively long as the hybrid
operating frequency is lowered. This problem can be bypassed by

substituting lumped-element low-pass filters for the coaxial cables.
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Resolution of the Paradox Concerning Energy Flow

on Nonlinear Transmission Lines

A. E. KARBOWIAK AND R. H. FREEMAN

Absfracf—The energy relations and the constitutive relations

pertaining to a nonlinear transmission line are%xamined in detail.
It is concluded that mathematical models which have been used in

certain studies and which lead to the paradox concerning energy
dissipation in the shock front are inadmissible. Correct models are
free from such paradoxes. The work leads to the formulation of the

hypothesis of realization: it is impossible to retilze a continuous

loss-free transmission medium which would be characterized by

nonlinear distributed inductance L(1) and capacitance C(V), unless

the medium is dispersive.

INTRODUCTION

It is well known from studies in gas dynamics [1] that wave
propagation in a nonlinear medium is accompanied by formation of

shock waves. More recently, Landauer [3 ] and Riley [4] carried out
similar studies with respect to an electrical nonlinear transmission

line. Their work confirms the existence of shock wave and energy
dissipation in the vicinity of the shock front. However, with electrical
transmission lines it is possible, at least in principle, to reduce the

dissipation in the resistive elements to zero, and then, of course, it

becomes difficult to account for the energy lost.
To explain the paradox, some argue that the problem is im-

properly formulated and that the model must contain resistive ele-

ments [3], while others suggest that the lost energy is radiated from

the system by electromagnetic means [4]. Such “explanations,”
however, are not tenable; if the system is screened, like a coaxial

cable, radiation cannot be evoked. The problem with postulating
resistive elements is that if the problem is to be properly formulated,

then it must be possible to obtain a valid solution in the limit as the
resistive elements are reduced to zero. This, however, is not the case.

When the resistive elements are sufficiently small, the rate of energy
loss in the shock region is much too slow (in the limit infinitely slow)
to account for the loss implied.

The purpose of this short paper is to resolve the paradox, as far as

distributed systems are concerned, through a detailed study of the
equations involved.

MATHEMATICAL MODEL

If we accept the validity of Maxwell’s equations, then we must

also accept the pair of equations

13v
– L(I):

d% =
(la)

(lb)

Manuscript received May 8, 1972; revised July 14, 1972.
The authors are with the School of Electrical Engineering, University of New

South Wales, Kensington, New South Wales, Australia.

Q

I B

QZ “/..--.. ------- ——_____

[’

,,

QI --- Pl-

/

,~ ~
——-i-

0 VI
——

V2 v

Fig. 1. Charge-voltage relation for a nonlinear capacitor.

describing voltage (V) and current (1) on a nonlinear transmission
line.

The functions C(V) and L(1) are the constitutive relations de-

scribing the properties of the materials making up the transmission

line. These describe, respectively, the differential capacitance and

inductance per unit length. For a nonlinear capacitor, the charge Q

as a function of voltage V can be represented by the nonlinear rela-

tion Q = Q(V) and the capacitance (really an incremental capaci-

tance) is defined by dQ/d V = C( V). We may regard C(V) as a phys-
ical property of the nonlinear capacitor.

In a similar way for a nonlinear inductor we have + = ~ (1), where

d is the magnetic flux and the nonlinear inductance is defined bv
L(I) =dcj/di

Fig. 1 shows a convex relation for a nonlinear capacitor and
wzutatis wzutandi a similar curve would apply with reference to a

nonlinear inductance with the one-to-one correspondence (~, L, 1)

N(Q, C, V).
It is sufficient to consider a particular relation, such as convex,

for the following reason,

From studies in fluid dynamics, it is known that for a convex rela-

tion between the velocity of propagation and the amplitude of the
disturbance, the trailing edge of the disturbance disperses while
the leading edge becomes a “shock front, ” whereas for a concave
relation it is the leading edge that disperses and the trailing edge

becomes the shock front. In this short paper we are concerned with
energy-conversion processes at the shock front as normally under-
stood, and whether the relations are convex or concave the results

are the same.

ENERGY CONSERVATION

We now examine the energy conservation in a region containing

a disturbance which forms a transition from ~1, 11 on one side to

17z, lZ on the other. If u is the velocity of the disturbance (to be de-

termined) and since charge and magnetic flux must be conserved,

we can equate the rate of accumulation of charge in the region, that
is U(Q2 —Ql), to the net current influx, that is 1! —11. A similar rea-

soning applies with respect to the magnetic-flux (I$) conservation,
that is, z~(~~–+1) must be equal to ~Z — V1. In this way we get

u(Q2 — Q1) = 12 — II (2a)

and

2J(4U — 01) = 1“2 — VI. (2b)

Equations (2a) and (2b) determine uniquely the velocity of the dis-

turbance.
The apparent energy loss in the vicinity of the disturbance can be

calculated as a difference between the net energy influx and the in-

crease in stored energy. The net rate of energy influx is VJZ — VIII
= ~ [(VZ+ VJ (Iz —lJ + (Iz+I1) (VZ — VJ ), while the rate of increase
in stored magnetic and electric energies is u~~ 1 d~ and tij$ V dQ,
respectively, ZL being the velocity of propagation.

The total rate of energy loss is

[
P = + ~(v, + VI)(QZ - QJ –

f.: 1V dQ

-1- [+(12 -1- Il)kih – 01) – ~:W]/ . (3)


